

Reg. No.:	×	1									70	18
-----------	---	---	--	--	--	--	--	--	--	--	----	----

Question Paper Code: 41320

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Fifth Semester

Computer Science and Engineering MA 6566 – DISCRETE MATHEMATICS (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

 $PART - A \qquad (10 \times 2 = 20 Marks)$

- 1. Define proposition.
- 2. Give the symbolic form of "Some men are giant".
- 3. Define Pigeon hole principle.
- 4. How many permutations can be made out of letter or word 'COMPUTER'?
- 5. Show that there does not exist a graph with 5 vertices with degrees 1, 3, 4, 2, 3 respectively.
- 6. Define Hamiltonian path.
- 7. Define semi group.
- 8. Prove that in a group idempotent law is true only for identity element.
- 9. Let $A = \{1, 2, 5, 10\}$ with the relation divides. Draw the Hasse diagram.
- 10. Prove that a lattice with five elements is not a Boolean algebra.

PART - B

 $(5\times16=80 \text{ Marks})$

i) Show that $(7P \land (7Q \land R) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$, without using truth 11. a) **(8)**

(8)

ii) Show that using Rule C.P, $7P \lor Q$, $7Q \lor R$, $R \to S \Rightarrow P \to S$ (OR)

i) Find the PCNF of $(P \vee R) \wedge (P \vee 7Q)$ Also find its PDNF, without using truth table.

(8)

ii) Show that $(\forall x) [P(x) \lor Q(x)] \Rightarrow (\forall x) P(x) \lor (\exists x) Q(x)$.

(8)

12. a) i) Prove that $n^3 - n$ is divisible by 3 for $n \ge 1$

(8)

ii) Solve G(k) - 7G(k-1) + 10G(k-2) = 8k + 6. (OR)

(8)

b) i) Find the numbers between 1 to 250 that are not divisible by any of the integers 2 or 3 or 5 or 7.

(8)

ii) Solve using generating functions : S(n) + 3S(n-1) - 4S(n-2) = 0; $n \ge 2$ given S(0) = 3, S(1) = -2.

(8)

13. a) i) State and prove Hand shaking theorem. Hence prove that for any simple graph G with n vertices, the number of edges of G is less than or equal to n(n-1)(8)

ii) Establish the isomorphism of the following pairs of graphs.

(8)

 v_6 Jenny sur mem remit I'm meril och deren add wiri'd . v_1 v_2 v_3 v_4 v_5 u_1 u_2 u_3 u_4 u_5 E E E D L surguido (OR) - a vario a stato de parte por parte de la contractor de la contrac

(8)

b) i) Prove that a graph G is disconnected if and only if its vertex set V can be partitioned into two non-empty, disjoint subsets \mathbf{V}_1 and \mathbf{V}_2 such that there exists no edge in G whose one end vertex is in subset V1 and the other in subset V₂.

ii) Prove that a connected graph G is an Euler graph if and only if all vertices of G are of even degree.

(8)

14. a) i) Show that (Q+, *) is an abelian group, where * is defined by

$$a*b = \frac{ab}{2}, \forall a, b \in Q^+$$

(8)

ii) Prove that kernel of a homomorphism is a normal subgroup of G.

(8)

(OR)—If It is get to a 97 at 3 what gates shall gotted to

i) Prove that intersection of two normal subgroups of a group G is again a normal subgroup of G.

(8)

ii) Let G be a finite group and H be a subgroup of G. Then prove that order of H divides order of G. (8)

15.	a)	i) Show that (N, \leq) is a partially ordered set, where N is the set of all positive	
		integers and \leq is a relation defined by $m \leq n$ if and only if $n - m$ is a	
		non-negative integer.	(8)

ii) In a complemented and distributive lattice, prove that complement of each element is unique. (8)

(OR)

- b) i) Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ with a relation $x \le y$ if and only if x divides y. Find:
 - i) All lower bounds of 10 and 15
 - ii) GLB of 10 and 15
 - iii) All upper bound are 10 and 15
 - iv) LUB of 10 and 15
 - v) Draw the Hasse diagram for D_{30} . (8)
 - ii) Let $(L, , \lor, \land, \le)$ be a distributive lattice and $a, b, \in L$ if $a \land b = a \land c$ and $a \lor b = a \lor c$. Then show that b = c. (8)

Show that (N, \leq) is a quartially equantial set, where N is the ent of all positive enteress and \leq is a relation defined by $m \leq n$ if end only if $n-m$ is n	
Ambatan avitagem-nan	
the is complemented and distributive lattice, prove that complement of each	4
Let $\Pi_{gg} = \{1,2,3,5,6,10,15,30\}$ with a relation $x \in y$ if and only if a divides $x \in \Pi_{gg} = \{1,2,3,5,6,10,15,30\}$ with a relation $x \in y$ if and only if a divides $x \in \Pi_{gg} = \{1,2,3,5,6,10,15,10$	tet.
. All leaves bounds of 10 and 15	
00 CLLB of 10 and 15	
Et brin 01 was betreef amount 114 vin.	